skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lininger, Katherine B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Beavers (Castor canadensis) have not been adequately included in critical zone research, yet they can affect multiple critical zone processes across the terrestrial-aquatic interface of river corridors. River corridors (RC) provide a disproportionate amount of ecosystem services. Over time, beaver activity, including submersion of woody vegetation, burrowing, dam building, and abandonment, can impact critical zone processes in the river corridor by influencing landscape evolution, biodiversity, geomorphology, hydrology, primary productivity, and biogeochemical cycling. In particular, they can effectively restore degraded riparian areas and improve water quality and quantity, causing implications for many important ecosystem services. Beaver-mediated river corridor processes in the context of a changing climate require investigation to determine how both river corridor function and critical zone processes will shift in the future. Recent calls to advance river corridor research by leveraging a critical zone perspective can be strengthened through the explicit incorporation of animals, such as beavers, into research projects over space and time. This article illustrates how beavers modify the critical zone across different spatiotemporal scales, presents research opportunities to elucidate the role of beavers in influencing Western U.S. ecosystems, and, more broadly, demonstrates the importance of integrating animals into critical zone science. 
    more » « less
    Free, publicly-accessible full text available February 12, 2026
  2. Coarse particulate organic matter (CPOM; organic matter 1–100 mm in diameter, excluding small wood) stored in streams provides an important energy source for aquatic ecosystems, and CPOM transport provides downstream energy subsidies and is a pathway for watershed carbon export. However, we lack understanding of the magnitude of and processes influencing CPOM storage and transport in headwater streams. We assessed how geomorphic complexity and hydrologic regime influence CPOM transport and storage in the Colorado Front Range, USA. We compared CPOM transport during snowmelt in a stream reach with high retentive feature (e.g., wood, cobbles, and other features) frequency to a reach with low retentive feature frequency, assessing how within-a-reach geomorphic context influences CPOM transport. We also compared CPOM transport in reaches with differing valley geometry (two confined reaches versus a wide, multi-thread river bead) to assess the influence of geomorphic variations occurring over larger spatial extents. Additionally, we compared CPOM storage in accumulations in reaches (n= 14) with flowing water or dry conditions in late summer and investigated how small pieces of organic matter [e.g., woody CPOM and small wood (>1 min length and 0.05–1 min diameter or 0.5–1 min length and >0.1 min diameter)] influence CPOM storage. We found that within-a-reach retentive feature frequency did not influence CPOM transport. However, valley geometry influenced CPOM transport, with a higher CPOM transport rate (median: 1.53 g min−1) downstream of a confined stream reach and a lower CPOM transport rate (median: 0.13 g min−1) downstream of a low gradient, multi-thread river bead. Additionally, we found that particulate organic carbon (POC) export (0.063 Mg C) in the form of CPOM was substantially lower than dissolved organic carbon (DOC) export (12.3 Mg C) in one of these headwater streams during the 2022 water year. Dry reaches stored a higher volume of CPOM (mean = 29.18 m3ha−1) compared to reaches with flowing water (15.75 m3ha−1), and woody CPOM pieces trapped 37% of CPOM accumulations. Our results demonstrate that the influence of geomorphic context on CPOM transport depends on the scale and type of geomorphic complexity, POC may be lower than DOC export in some headwater streams, and small woody organic material is important for trapping CPOM small streams. 
    more » « less
  3. Abstract In the southern Great Lakes Region, North America, between 19,000 and 8,000 years ago, temperatures rose by 2.5–6.5°C and sprucePiceaforests/woodlands were replaced by mixed‐deciduous or pinePinusforests. The demise ofPiceaforests/woodlands during the last deglaciation offers a model system for studying how changing climate and disturbance regimes interact to trigger declines of dominant species and vegetation‐type conversions.The role of rising temperatures in driving the regional demise ofPiceaforests/woodlands is widely accepted, but the role of fire is poorly understood. We studied the effect of changing fire activity onPiceadeclines and rates of vegetation composition change using fossil pollen and macroscopic charcoal from five high‐resolution lake sediment records.The decline ofPiceaforests/woodlands followed two distinct patterns. At two sites (Stotzel‐Leis and Silver Lake), fire activity reached maximum levels during the declines and both charcoal accumulation rates and fire frequency were significantly and positively associated with vegetation composition change rates. At these sites,Piceadeclined to low levels by 14 kyr BP and was largely replaced by deciduous hardwood taxa like ashFraxinus, hop‐hornbeam/hornbeamOstrya/Carpinusand elmUlmus. However, this ecosystem transition was reversible, asPiceare‐established at lower abundances during the Younger Dryas.At the other three sites, there was no statistical relationship between charcoal accumulation and vegetation composition change rates, though fire frequency was a significant predictor of rates of vegetation change at Appleman Lake and Triangle Lake Bog. At these sites,Piceadeclined gradually over several thousand years, was replaced by deciduous hardwoods and high levels ofPinusand did not re‐establish during the Younger Dryas.Synthesis. Fire does not appear to have been necessary for the climate‐driven loss ofPiceawoodlands during the last deglaciation, but increased fire frequency accelerated the decline ofPiceain some areas by clearing the way for thermophilous deciduous hardwood taxa. Hence, warming and intensified fire regimes likely interacted in the past to cause abrupt losses of coniferous forests and could again in the coming decades. 
    more » « less